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SUMMARY 

A formulation of the boundary element method for the solution of non-zero Reynolds number 
incompressible flows in which the non-linear terms are lumped together to form a forcing function is 
presented. Solutions can be obtained at low to moderate Reynolds numbers. The method was tested 
using the flow of a fluid in a two-dimensional converging channel (Hamel flow) for which an exact 
solution is available. An axisymmetric formulation is demonstrated by examining the drag experienced 
by a sphere held stationary in uniform flow. Performance of the method was satisfactory. New results 
for an axisymmetric free jet at zero Reynolds number obtained using the boundary element method are 
also included. The method is ideal for this type of free-surface problem. 
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1. INTRODUCTION 

Direct implementation of boundary integral equation methods has received a great deal of 
attention over the last decade in the expectation that these methods would have the ability to 
handle certain classes of problems without the large storage requirements and computational 
effort associated with classical finite element methods. Initial development and implementa- 
tion of these methods in two- and three-dimensional elastostatics appears to be due to 
Rizzo' and Cruse.' The basis of the method is flexible and has allowed boundary integral 
formulations to be applied to a wide variety of linear and non-linear problem classes3 
including elastodynamics; analysis of composite materials,s anisotropic materials,6 elasto- 
plastic deformation problems7 and low Reynolds number fluid 

The present report describes a 'pseudo-body force' implementation (treating the non- 
linear terms as forcing functions) of the integral equation method in plane and axisymmetric 
co-ordinates. This represents a new application of this well-known technique to the problem 
of solving non-zero Reynolds number flows of a Newtonian, incompressible fluid. The 
treatment is analogous to the successful elasto-plasticity work of Banerjee and Cathie;7 
further examples and references are given in Brebbia.3 The method provides a solution that 
is effectively a regular perturbation of Reynolds number for arbitrary geometry. This work 
represents ongoing research by the authors" and forms a basis for more sophisticated 
treatments of this problem and other non-linear fluid mechanics problems such as non- 
Newtonian fluid mechanics. 

In the first section of the paper we derive the relevant integral equations from the 
governing equations of motion. Subsequent sections give details of the numerical treatment 
and solution scheme used. Finally, we demonstrate the new method by presenting the 
numerical examples of flow between converging planes (Hamel's problem) and evaluation of 
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the drag on a sphere in an infinite medium; the potential of the method for solving free 
surface problems is also demonstrated by an example. 

2.  GOVERNING EQUATIONS OF MOTION 

To define the terminology used throughout this report the governing equations are sum- 
marized in this section. The equations of motion and mass conservation for an incompressi- 
ble, Newtonian viscous fluid can be written using Cartesian tensor notation as follows: 

auk 

a x k  

-= 

where @jk is the stress tensor, u k  are the velocity components, p is the fluid density, f i  are 
arbitrary body forces per unit mass and ui are the acceleration components per unit mass. 
Under steady state conditions the aj are given by 

The stress tensor can be written as 

@jk = + 2&Ldjk (4) 

where p is the pressure,, 6 j k  is the Kronecker delta function which is unity if i = k and zero if 
if k, &L is the (constant) viscosity and d i k  is the rate of strain tensor given by 

Both ajk and d j k  are symmetric tensors. 

or the velocity will be specified over the fluid boundaries. 
To these equations are added boundary conditions; either the traction (force per unit area) 

3 .  INTEGRAL REPRESENTATION OF THE GOVERNING EQUATIONS 

In this section we use a weighted residual statement as the starting point for development of 
the required integral equations, and the treatment follows closely the treatment given to the 
equivalent elasticity problem by Brebbia." 

Consider a set of arbitrary velocity, pressure and stress weighting fields signified by u:, p* 
and cr:. If conditions (1) and (2) are not satisfied identically in some region R and the 
boundary conditions only approximately satisfied on the boundary r of the region then the 
following weighted residual statement can be written: 

where ti is a traction vector g j k n k  formed from @jk and the unit outward normal vector 
components f ik  at the surface, Gj are the velocity components given as boundary conditions 
on the sections of l7 represented by rl and { are the traction components given as boundary 
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conditions on Tz (where rl + r2 = r, the whole surface). Since (6) will vanish for any solution 
satisfying (1) and (2) and the boundary conditions, (6) must be true for arbitrary (*) fields 
when the unstarred field is the true solution to the problem in hand. 

If the solution satisfies the boundary conditions fully then the governing equations are only 
approximately satisfied in 0, giving rise to conventional finite element formulations. How- 
ever, if the boundary conditions are approximately satisfied and the weighting functions 
chosen such that they satisfy the equations of motion and continuity, boundary integral 
formulations are obtained." 

In the present work the (*) fields are taken to be Newtonian and incompressible. After 
integrating (6) by parts the integral equation becomes 

Equation (7) can be reduced in the following manner. Since @jk and djk  (hence u$ and dg) 
are symmetric, the second term in (7) can be written in the following form: 

The integrand in (8) can be expanded using (4) to give 

If the true and (*) fields in (9) are interchanged then the following results: 

where p* is the viscosity of the Newtonian (*) field. Since the (*) field is chosen to be 
incompressible then the first term on the right-hand side of (9) vanishes and if p* = p (9) and 
(10) can be combined to yield 

This is a reciprocal theorem for incompressible viscous f l o ~ . ~ , ~  Integration by parts can again 
be used to yield: 

(12) 

and substituting into (7) gives 

In (13) it is understood that ui = iii on 
further reduced by choosing the (*) fields such that 

and ti = 4 on Tz. The left-hand side of (13) can be 

%+A(P)aij * = 0 

axk 
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where A(P) is the Dirac delta function at the point P in the domain R and 6, is the 
Kronecker delta function. The (*) field therefore satisfies Stokes' equations in an infinite 
domain with a unit point source of momentum in the i direction at P and the solution of (14) 
is the familiar ' S toke~ le t ' . ~~ . '~  

It is useful to elaborate the terminology at this stage for purposes of clarity. If the 
Stokeslet force oriented in the i direction is at P then we represent by u:(P, Q) the j 
component of the corresponding velocity at Q. Similarly, the traction field at a boundary 
point Q is written as t:(P, Q). Using this terminology and substituting (14) into (13) gives 

ui(P) = p[ (JI(Q)-uj(Q)}u$(P, 0 )  dR+  1 t,(Q)u$(P, 0 )  dT - 6 uj(Q)t:(P, Q) dT (15) 
0 

The result (15) is general for two- and three-dimensional cases; it can also be used to 
represent problems in axisymmetric co-ordinates if (14) is solved for the case of a unit source 
of momentum distributed evenly around a ring. Solutions for the equivalent elasticity 
problem are presented incompletely by Kermanid i~ '~  and Cruse et The complete 
solution in the form used for the present investigation is shown in Appendix I. 

Equation (15) provides an expression for the velocity field at any interior point P and can 
provide a suitable expression for P lying on the boundary r by allowing P to become a 
boundary point. However, the equation contains integrals that are singular when P coincides 
with Q. The integrals involving ua(P, Q) are weakly singular and do not require special 
treatment whereas the integral involving t:(P, Q) is strongly singular when P lies on the 
boundary and exists only as a principal va1ue.l6 The jump corresponding to the strongly 
singular integral has been dealt with in the l i t e r a t ~ r e ~ , ~ , ~ ~ ' ~  and equation (15) can be written 
in the general form: 

where C,, = 6, if P lies in the domain CR and if P is a point on the boundary r the value of C,, 
depends on the smoothness of the boundary. For a smooth boundary at P, C,, =&,. (By 
smooth we mean that at the point P the boundary has a continuous profile with no sharp 
corners.) 

Equation (16) provides the required relationship between the velocity field at any point P, 
the surface values of velocity and traction and a body force term. The appearance of the 
non-linear acceleration terms a, in the body force integral suggests the name 'pseudo-body 
force' as an apt description of the formulation. Since a, depends on the velocity field, the 
pseudo-body force is not known prior to solution and an iterative scheme must be used. The 
solution scheme used in the present work is described in a later section. 

An equation similar to (16) (with more complicated kernels) can be written for internal 
stresses (see Brebbia") and hence, by summing the direct stresses, the internal pressures can 
be found. This equation can be used to evaluate internal stresses once the body forces are 
known; however, this is not pursued in this report. 

The velocity gradients required for evaluation of a, can be obtained directly by differen- 
tiating (16). However, since the velocity field must also be computed and the gradients are 
required at a large number of interior points, we have chosen to use a finite element 
approximation to evaluate the gradients. This is described in the following section. 
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4. DISCRETIZATION OF THE INTEGRAL EQUATIONS 

Numerical implementation of (16) requires discretization of the boundary into a number of 
‘boundary elements’ and discretization of the interior into a number of ‘internal cells’ as 
shown in Figure 1. The boundary elements used are geometrically linear and the functions 
(velocity and traction) are assumed to be constant on each element. As shown in Figure 2 
only one centrally located node needs to be associated with an element where ,,uJ and ,,tJ are 
the velocity and traction components at the nth node (nth element). 

The internal velocity field is approximated by evaluating the velocity components at each 
interior node (Figure 1). The velocity field at any interior point can then be approximated by 
interpolating between the vertices of each internal cell. The velocity gradients are approxi- 
mated by assigning to each cell a value of gradient obtained by differentiating the linear 
interpolating function. A value can then be assigned to each cell vertex by averaging the 
values contributed by all cells sharing this vertex. This averaging procedure was found to be 
necessary since it distributes the errors more evenly and provides a much improved 
approximation of the gradient at the vertex. The velocity gradients at any interior location 
are then obtained by interpolating between the vertices of the relevant cell. An alternative 
approach to computing the gradients is to differentiate (16) and evaluate the new boundary 
and domain integrals. However, the former approach obviously involves far less computa- 
tional effort and was found to provide adequate results. 

Following discretization of the boundary r into N elements of the type shown in Figure 2 

r 

LBOUNDARY ELEMENTS 

Figure 1. Discretization of boundary r and domain fi into elements and cells. A typical boundary element bounded 
by points n and n + 1 is shown in Figure 2 

Figure 2. The ‘constant’ boundary element corresponding to the nth node. 
The node is located centrally on the element and has tractions ,,ti and velocities 

mu, n 
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and the region SL into M cells as shown in Figure 1, equation (16) can be written as 

N M 

c,u,(P)+ t$(P, Q) d r = p  b,(O)u$(P, Q) d a +  f ntj 1. u$(P, Q) d r  (17) 
n = l  m = l  a,  n = l  

where b,(Q)=f,(Q)-a,(Q) is the total body force, 0, refers to the mth internal cell, rn 
refers to the nth boundary element and P refers to a node. This can be rewritten in 
matrixlvector form as 

H u =  Gt+b  (18) 

where u and t are vector assemblages of nu, and nt, on the boundary, b is a vector 
corresponding to the body force terms and H and G are coefficient matrices composed of 
integrals of t:(P, Q) and u:(P, Q) respectively over individual boundary elements. 

In a well-posed problem the number of unknown components of u and t combined should 
equal the number of prescribed values and (18) can be accordingly rearranged to give: 

A x = y + b  (19) 

In (19), x represents the unknown boundary values, A is the resulting matrix of coefficients 
and y is a known vector incorporating the prescribed boundary values. For a plane or 
axisymmetric well-posed problem x, y and b are all 2 N x  1 vectors and A is of order 
2 N x 2 N .  The matrix A is fully populated and generally not symmetrical or diagonally 
dominant. It is therefore not amenable for specialized direct or iterative solution procedures 
and for a given b (19) is best solved using Gaussian elimination. 

Once the boundary solution has been obtained, (17) can be used to provide the velocity 
field at any interior node. If there are L such nodes then the interior velocity field solution 
can be written in matrixlvector form as 

V =  Rt-Su+c (20) 

where v is a 2L x 1 vector representing the internal solutions, t and u are the 2NX 1 
boundary vectors as given in (18), R and S are coefficient matrices of order 2L X 2N and c is 
a 2L x 1 vector representing the non-linear terms. 

An iterative scheme can now be devised using (19) and (20). However, before proceeding 
with this we give some details of evaluation of the integrals appearing in (17). 

5 .  COMPUTATION OF THE INTEGRALS 

In this section we discuss the numerical treatment given to the integrals in equation (17). 
Two cases need to be considered: (a) the point P does not lie on the boundary element or  
internal cell in question and (b) P lies on the element or cell. In case (a) the singularity in the 
kernels u$(P, Q) and t$(P, Q) does not lie in the interval or region of integration and 
ordinary Gaussian quadrature can be applied. In case (b), however, the singular characteris- 
tics of the kernels require the special treatment described below. 

5.1. Integration along boundary segments 

When the point P corresponds to the nth boundary node and integration is being 
performed along the nth element as shown in Figure 2, the kernels in both plane and 
axisymmetric co-ordinates contain singularities of order In Is1 and l/s. Owing to the simple 
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form of the kernels in plane co-ordinates, the integration can be performed a n a l y t i ~ a l l y . ~ ' ~ ~  
However, the axisymmetric kernels are significantly more complicated and are treated by 
extracting the leading singular terms and integrating these in exact form. The remainder of 
the kernel is then integrated using standard Gaussian quadrature. 

5.2. Integration over internal cells 

Two possible situations arise. The first is the case where the source point P coincides 
with the vertex of a cell and occurs during computation of the internal velocity field. The 
second case is where P lies on the edge of a cell and occurs during preparation of the 
boundary solution. However, the second case can be considered as a repetitive application of 
the first case and does not require separate treatment. 

W e n  the source point P coincides with a vertex of the mth cell, the integral over that cell 
can be written as: 

In (21) {b,(Q)-b,(P)} uniformly approaches zero as Q approaches P and at least partially 
counters the weakly singular behaviour of u:(P, Q). The first integral on the right-hand side 
of (21) is then more amenable to numerical integration. For the plane problem the second 
integral on the right-hand side of (21) can be performed in exact form and analytical 
expressions are presented in Appendix 11. The axisymmetric problem is not handled as easily 
and it is necessary to extract only the leading singular term from u:(P, Q )  (In (w), where w is 
the separation of P and Q )  and rewrite (21) as 

where bj(Q)u:(P, Q) - Ci(P) In (w) is bounded as Q approaches P. The second integral on 
the right-hand side of (22) is given in Appendix 11. 

6. SOLUTION SCHEME 

The solution scheme used in the present investigation based on equations (19) and (20) is as 
follows. If the superscript n indicates the nth approximation of the solution then the updated 
boundary solution is given by 

Axnt1 = y + bn (23) 

(24) 

and the updated velocity field solution is then obtained using 
" n i l  = Rtn+l- SUn+l 

The starting solution is obtained by setting b and c to zero, thereby providing the zero 
Reynolds number solution for the particular geometry and boundary conditions. 

Such a scheme of lumping the non-linear inertia terms together to act as forcing function 
in (23)  is expected to fail to converge once inertia becomes the dominant effect and in similar 
finite element schemes this occurs at very low values of Reynolds number.17 A solution 
obtained in this manner can therefore be regarded as a regular perturbation of Reynolds 
number for arbitrary geometry. However, we note that A does not change during iteration 
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and need be eliminated only once, provided a record of the elimination procedure is 
retained. Furthermore, the order of A depends on the number of boundary elements and not 
on the number of internal cells. Most of the computational effort is involved with evaluation 
of b and c and this is readily controlled by variation of the grid coarseness. We therefore 
propose that the method presently described is a useful means of obtaining non-zero 
Reynolds number solutions and we proceed to demonstrate its use. 

7. EXAMPLES OF SOLVED PROBLEMS 

In this section we present the solutions to some problems obtained using the boundary 
integral equation method described. The first problem treated is that of an axisymmetric, 
Newtonian free jet at zero Reynolds number (zero density fluid). These results provide a test 
of the kernels presented in Appendix I for axisymmetric problems (see also Bush and 
Tanner'") and demonstrate successful extension of the program to handle free surface flows. 

The second problem treated is the Hamel flow problem with non-zero Reynolds number. 
This is a mildly non-linear problem that has an exact solution for comparison with the 
numerical results. Finally, the drag on a sphere held in a uniform flow is examined at low 
Reynolds number. 

All numerical solutions were obtained using CDC Cyber 170-730 computer operating in 
single precision. 

7.1. Axisymmttric jet 

Boundary element solutions of the expansion of a plane, Newtonian free jet have 
previously been p r e ~ e n t e d . ~ . ~  The boundary discretization used for the equivalent axisym- 
metric problem is shown in Figure 3 where Z is the distance measured from the exit plane, R 
is the radius of the jet at any 2 and R, is the nozzle radius. The numerical boundary 
conditions applied correspond to fully developed Poiseuille flow upstream, no-slip velocity 
conditions on the nozzle and zero normal and tangential traction conditions on the free 
surface and downstream boundary. Figure 3 shows the starting geometry, which corresponds 
to a plug flow. 

The method of finding the free surface geometry was to first solve the problem with the 
prescribed boundary conditions and starting geometry. The assumed free surface will 
generally not describe a stream surface and the computed normal velocity will not be zero. 
The free surface geometry is correspondingly updated and the process repeated until 
convergence has occurred. Convergence was rapid with little change occurring after 4 
updates; the final jet expansion was 12.84 per cent. Figure 4 shows the final jet geometry 
(after 4 iterations) compared with a least-squares curve fitted to experimental data by 

FREE SURFACE 

f t '  

Figure 3. Discretization of the jet boundary. The number of boundary elements is 27 (+ indicates the end points 
of elements) 



NUMERICAL SOLUTION OF VISCOUS FLOWS 

20 

16- 

12 

2 8 -  
U . < 
0 ° C -  

0 

- & I F  

79 

- 

- 

, t t 

Figure 4. Comparison of computed jet shape (----) with other numerical results from AXF'INR19 (0) and the 
experiments of Batchelor and Horsfal118(- - -). The bars indicate approximate spread of measurements 

Batchelor and Horsfall" and numerical results obtained using the AXFINR finite element 
program (see Nickelf, et ~ 1 . ' ~ ) .  Agreement with the experimental results is satisfactory and 
agreement between the numerical results is excellent. 

One of the most difficult features of this problem to capture numerically is the stress 
singularity at the exit lip of the jet. If a finite element program is to be used to model this 
problem a fine mesh in the region of the lip is required to follow the rapid variations in 
stress. The total number of degrees of freedom in the problem is correspondingly large. The 
boundary element method however allows a fine boundary discretization to be used near the 
lip without a large increase in the number of unknown quantities to be evaluated. The stress 
can then be evaluated at any chosen interior location. In Figure 5 the dimensionless tensile 
stress a,,R,/pii, where ii is the average axial velocity, is plotted against radius r at the jet 
exit plane and the difficulty in modelling such a problem is readily apparent. It is interesting 
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to note that the AXFINR program was run using 2928 degrees of freedom whereas the 
boundary element program used only 54. The latter required only 2 per cent of the 
execution time of AXFINR to obtain the jet shape. 

7.2. Humel flow problem 

The flow of a fluid between two infinite flat plates set at an angle as shown in Figure 6 is 
termed the Hamel problem, after one of the first investigators of the problem, and a 
comprehensive discussion of Hamel flow is given by Batchelor.” This problem provides a 
means of testing numerical solution schemes since it is a steady state flow in which the inertia 
terms do not vanish identically (as they do in flow between infinite parallel plates and 
Poiseuille flow) and an exact solution can be obtained for comparison with numerical results. 
For these reasons the Hamel problem was used as a test example by Gartling et ul.” in a 
finite element convergence study, and we have chosen to use it as a comparative test of the 
present solution method. 

7.2.1. Theory. For study of the Hamel problem it is useful to use polar co-ordinates ( I ,  6) 
where r is the distance from the intersection of the two walls and 6 is measured from the 
centreline (Figure 6) .  The exact solution of the problem is based on the assumption of purely 
radial flow which yields self-similar velocity profiles at all radii. The product of centreline 
velocity uo and radius r is constant. This allows the Reynolds number for the flow to be 
defined as 

which is constant throughout the flow field for a given half angle a, density p and viscosity F. 
The analysis of Batchelor’” leads to the following identity governing Hamel flow: 

df 
(I-f)”’{$x Re( f ’+ f -2 )+4a ’ f+~~~/ ’  

where f is the ratio of radial velocity y ( r ,  6) to centreline velocity uo and c is constant. A 
numerical representation of the exact solution obtained from (26) using an iterative, 
numerical quadrature process is reported by Gartling et u E . ’ ~  and was used to provide the 
‘exact’ solutions given in the present report. For given values of a, p, p and flow ratelunit 
length (flux) the procedure provides updated approximations of the Reynolds number until 
the computed flux matches the prescribed flux. The velocity profiles can then be computed. 

The case of zero Reynolds number flow (zero density fluid) can be solved analytically. The 

Figure 6. Hamel flow problem-sink or source located at the origin of co-ordinates 
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problem reduces to one of solving the following differential equation: 

where q = 8/a. The solution of (27) is 
cos (2aq) - cos (2a)  

1 -cos (2a)  u,(r, 8)  = uo 

The centreline velocity uo can be evaluated for a given flux using 

Flux = ar ur(r, q) dq. (29) J: 
7.2.2. Numerical results. For the results presented in this section a = 30", p = 1, flux = 1 (in 
the half wedge 8 = 0 to 8 = a )  and the Reynolds number was varied by changing p .  Purely 
convergent flow (inflow) is considered. 

Since only a finite length of wedge geometry can be modelled by the numerical procedure, 
a set of boundary conditions had to be applied to the upstream and downstream ends of the 
wedge. This presented a difficulty since the conditions here are not known exactly and must 
be approximated. Velocity boundary conditions corresponding to zero Reynolds number 
flow were applied on the upstream end of the wedge to provide the required flux through the 
wedge-shaped region. At the medium values of Reynolds number considered in this work 
the influence of this boundary condition approximation affects the solution in the immediate 
neighbourhood of the boundary but the disturbance dies away some distance downstream. 
We show later that ample undisturbed regions exist downstream, providing approximations 
of the exact solution. Zero traction boundary conditions were applied on the downstream 
end of the wedge which again introduce a small disturbance. This disturbance dies away a 
small distance upstream. No-slip velocity conditions were prescribed on the plate wall and 
symmetry conditions on the centreline. The section of the wedge considered in the numerical 
calculations was the region between the radius r = $ and r = 4. 

The three different grid patterns used are shown in Figure 7(a), Figure 7(b) and Figure 
7(c). In all cases the number of boundary elements remained fixed at N =  32; the particular 
boundary discretization is shown in Figure 7(a) where the side of a cell lying on the boundary 
represents a boundary element. The three different meshes Grid 1, Grid 2 and Grid 3 
therefore represent a variation in approximation of the internal velocity field, having M = 96, 
A 4  = 54 and M = 28 internal cells respectively. 

Figure 7(a). Grid 1-32 boundary elements, 96 cells 
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‘A 

Figure 7(b). Grid 2-32 boundary elements, 54 cells 

Figure 7(c). Grid 3-32 boundary elements, 28 cells 

In order to provide a measure of the computational effort needed to produce the 
non-linear solution relative to the linear solution of the particular problem, a comparison can 
be made between the computation time required for each iteration in the non-linear solution 
and the time required to obtain the creeping solution. The ratio of the former to the latter on 
Grid 1, Grid 2 and Grid 3 was 1.6, 1.0 and 0.5 respectively. It should be remembered that 
the creeping solution (the first iteration in the non-linear solution) involves complete 
assembly and elimination of the coefficient matrix whereas subsequent iterations rcquire only 
back substitution after the pseudo-body forces have been integrated. In view of this one 
would expect that most of the computational effort per iteration in the non-linear solution is 
involved with evaluation of the body force integrals. The amount of time required for the 
creeping solution relative to subsequent iterations will therefore increase as the number of 
boundary elements is increased relative to the number of internal cells. 

The following series of results correspond to the Reynolds number Re= 10.9 for which 
convergent solutions were obtained with all grids. Iteration was terminated on satisfaction of 
the inequality 

where k is the number of internal velocity degrees of freedom. Of primary interest is the 
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3.1- 

RADIUS r 

Figure 8. Radial variation of centreline speed uo and the product uor on Grid 1, Re= 10.9. ---, true value of uor; 
- , true uo profile; 0, nodal values of uor; 0, nodal values of uo 

influence on the numerical solution of the upstream and downstream boundary condition 
approximations. To observe this we have plotted in Figure 8 the radial variation of centreline 
speed uo and of the product uor for Grid 1. It is clear that the downstream approximation 
has little obvious effect on the solution. However, as seen in the plot of u,r, the upstream 
approximation is influencing the solution in the vicinity of this boundary but dies away 
sufficiently within 3 elements to leave an effectively constant value of uor as expected. The 
corresponding functions plotted from Grid 2 and Grid 3 showed a similar behaviour and are 
not presented. 

Figure 9 shows the variation of lux\ (the absolute value of UJ at a radius r = 1 as a function 
of normalized angle @/a. Since the present formulation uses linear interpolation of velocity 
between nodal values, a piecewise linear approximation of the true shape of the solution is 

.2 .G .6 .8 1. 
e /a 

Figure 9. Profile of lux/ at r = 1, Re=  10.9. ---, exact solution; -, Grid 1; - I  -, Grid 2; -. . -, 
Grid 3 
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obtained. It can be seen that as more internal nodes are used the nodal solutions are on the 
whole closer to the exact solution. This fact, together with the better piecewise linear 
approximation of the curve obtained, gives an overall better numerical representation of the 
exact solution and demonstrates the convergence of the solution method. The largest nodal 
error of 4.6 per cent occurs on Grid 3 at the centreline. Figure 10 shows the variation of IuyI 
at the radius r = 1 for Grid I, and indicates that the discretization scheme is not sufficient to 
provide an adequate approximation of the maximum absolute value of uy. If a better 
approximation was required, Figure 10 could be used to decide how the grid should be 
modified. 

In order to accelerate iterative convergence where necessary an overrelaxation facility was 
built into the code that operates on successive internal velocity field solutions. Figure 11 
shows the centreline speed uo at r = 1 as a function of iteration number for Grid 1. Iteration 
zero is the creeping (zero Reynolds number) solution. Relaxation factors of a, 4 and 1 were 
tested. The figure indicates that convergence of the numerical solution at this point is most 
rapid with a relaxation factor of 4. However, this is not true for all points in the mesh since 
the number of iterations required to satisfy (30) with relaxation factors of a, 4 and 1 were 15, 
8 and 6 respectively. Figure 11 indicates that use of a relaxation factor less than with Grid 
1 at this Reynolds number causes over-damping and slow convergence. 

The behaviour of the velocity profile (u,) on Grid 1 at the radius r = 1 without relaxation is 
shown in Figure 12 where simple oscillating behaviour can be seen. The number of iterations 
required for (30) to be satisfied without relaxation on Grid 1, Grid 2 and Grid 3 were 6, 5 
and 4 respectively, as a consequence of the variation in degrees of freedom between the 
mesh patterns. 

To observe the effect of higher Reynolds number on the numerical solution we considered 
only Grid 1 since it provides the best approximation. The solution was evaluated at various 
values of the Reynolds number between Re=O and Re=30.  The solution at a particular 
Reynolds number was obtained using the previous solution as the starting point for iteration. 
The results are plotted in Figure 13 where the centreline speed uo at r = 1 is shown as a 
function of Reynolds number. The behaviour seen in Figure 13 is not unpredictable since an 

,---. .6 \ 
- 

.5 - 

I 

0. .2 .L .6 1. 
e / a  

Figure 10. Profile of Iu,, 1 (--) on Grid 1 at r = 1, re = 10.9 compared with the exact solution (- - -) 
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Figure 11. Behaviour of centreline speed uo on Grid 1 at r = 1, Re = 10.9 with various values of the overrelaxation 
factorc . - ,c=l ; - - - ,  c=O~S;---~-,c=0~2S 

increasingly less accurate solution at higher values of the Reynolds number is expected. At 
values of the Reynolds number greater than R e =  13 the numerical solution is significantly 
less than the exact solution, indicating departure from purely radial flow. This can be seen 
effectively in Figure 14, which shows the velocity profile (I&!) at I =  1 for Re=29.8.  
Examination of the velocity vectors at the nodes indicated that the flow has departed 
significantly from purely radial flow to produce a numerical solution that lies below the exact 

0.- I I I I 

0. .2 .L .6 .8 1. 
e/Ct 

Figure 12. Behaviour of the velocity profile lu,l at r = 1, R e =  10.9 on Grid 1. No relaxation. -, exact creeping 
solution; ---exact solution for Re = 10.9; 0, iteration zero; A, iteration 1; ., iteration 6 

0 
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20 
a 

30 

Figure 13. Comparison of the computed centreline speed uo at r = 1 on Grid 1 (0) with the exact values (-) for 
increasing Reynolds number Re 

solution. The solution at the centreline is in error by 3-5 per cent and the grid is no longer 
sufficient to provide an adequate representation of the velocity field. It was found that the 
solution on this grid failed to converge above the Reynolds number Re = 34. 

7.3. Drag on a sphere held in uniform flow 

In this section we consider the more difficult problem of computing the drag experienced 
by a sphere held in uniform flow. Since boundary traction is one of the unknowns evaluated 

Figure 14. Comparison of the velocity profile lu,l on Grid 1 at r = 1, Re = 29.8 (-) with the ex ct solution (---) B 
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directly by the boundary element method, the drag experienced by a surface can be found 
directly without the need for auxiliary computations. 

Accurate measurements of sphere drag at low Reynolds numbers have been made by 
Maxworthy2' where comparison between these and other experimental and theoretical 
results is made. The most interesting feature of this paper is the conclusion that the 
perturbation formula of Goldstein (see Van Dyke22) based on the Oseen linearization of the 
Navier-Stokes equations provides a better representation of the sphere drag trend for 
Re < 0.9 (based on sphere diameter) than the corresponding expansion for the full Navier- 
Stokes equations by Proudman and P e a r ~ o n . ~ ~  However, the latter provides a good approxi- 
mation of the drag to the higher value Re = 1.3. For values of Reynolds number R e >  3, 
Maxworthy2' shows that the results presented by Perry24 are adequate. In the present report 
the numerical results are compared with values given by Maxworthy for Re < 3 and Perry24 
for Re > 3. 

The mesh pattern used is shown in Figure 15 where 100 cells provided the velocity field 
approximation. The two semicircular sections comprised the discretized boundaries contain- 
ing 20 boundary elements. The axis of revolution does not require discretization to provide a 
solution since it represents a surface of zero area. The numerical boundary conditions 
applied were no-slip velocity conditions on the sphere and uniform flow conditions on the 
outer boundary. A uniform flow of U =  1 was applied parallel to the axis of revolution and 
zero traction conditions normal to the axis. The ratio of outer boundary radius to the sphere 
radius a is 12. 

Following the discussion of section 7.2.2 concerning computation time, one would expect 
that with the large number of internal cells relative to boundary elements in this problem, 
the computation time required for each iteration in the non-linear solution relative to the 
creeping solution will be correspondingly large. The value of this ratio was found to be 3-1. 

It may be argued that such an arrangement of boundaries is actually modelling the flow 
caused by a sphere held stationary within a second moving sphere. However, this is not the 
case since the velocity normal to the axis of revolution on the outer boundary is not 
prescribed. To verify this we compared the computed zero Reynolds number drag experi- 
enced by the sphere with the theoretical Stokes drag of 67~pUa.~' The relative difference 
between the computed value and the theoretical value for an infinite field was 5 per cent 
whereas the difference between the solution for the moving outer sphere case and the Stokes 
drag was 21 per cent. A further test was performed by extending the grid such that the ratio 

Figure 15. Boundary and field discretization for the sphere drag problem; 20 boundary elements, 100 cells 
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R e  

Figure 16. Comparison of computed drag coefficient (0) C ,  = DRAG/(TU~&LT’) with experimental results (-) 
of Maxworthy” (Re < 3) and Perryz4 (Re > 3) for various values of the Reynolds number Re = 2 a U p / ~  

of outer boundary radius to sphere radius was 24, twice the previous value. The computed 
Stokes drag was in error by 1-6 per cent, and the difference between the drag computed on 
each grid at the Reynolds number Re = 1 was less than 1 per cent. We are therefore 
confident that the boundary geometry shown in Figure 15 and boundary conditions used 
provide a reasonable approximation of the required flow at low Reynolds number. The 
solution at a given Reynolds number was obtained using the previous solution as the starting 
point. As shown in Figure 16 agreement is good up to the Reynolds number Re=4 .  The 
results are also tabulated in Table I. Convergent solutions at higher values could not be 
obtained. However, solutions at the low values of Reynolds number for which the grid was 
intended are excellent and agree with the measurements of Maxworthy to within 5 per cent. 

Table I. Sphere drag data (see Figure 16) together 
with relative error 

C D  CD Error 
Re Experimental Numerical % 

0-3  84.4 84.8 0.5 
0.5 52.3 51.9 0.8 
1.0 27.8 27.7 0.4 
2.0 14.9 15.3 2.7 
3.0 10.5 11.0 4.8 
4.0 8.1 8.8 8.6 - 
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8. CONCLUSIONS; USE OF VELOCITY -TRACTION SCHEMES 

In this paper we have described a formulation of the boundary element method that allows 
incompressible flow at non-zero Reynolds numbers to be handled. The purpose of the paper 
was to present some preliminary (but not exhaustive) test examples to indicate the success of 
the new method. The Hamel flow problem was used as the main test example since an exact 
solution exists. Performance of the program was satisfactory. The sphere drag problem 
provided a test of the axisymmetric part of the code once overall behaviour of the solution 
method was established on the Hamel problem. Performance was again satisfactory. The 
example of the axisymmetric free jet at zero Reynolds number provides the base for future 
examination of this problem at non-zero Reynolds number using the new method. 

The discretization and functional approximation used in this work was the simplest 
possible. The present results indicate that the method is successful and that progression to 
the use of higher order elements would be warranted. 

The failure to converge at higher Reynolds numbers is not unexpected. To avoid this 
problem one can envisage a VELOCITY -TRACTION method whereby internal velocities 
are evaluated as unknowns, together with the surface velocities and tractions already used. 
Then a successive substitution scheme can be used to find the solution, which will greatly 
enhance the chances of success at higher Reynolds numbers. Because of the accuracy in 
finding drag-coefficients due to the use tractions as direct solution variables, this scheme is 
considered a useful extension of the work presented here. A successive substitution solver 
has been implemented and is presently being tested. 
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APPENDIX 1. SINGULAR SOLUTIONS 

(i) Plane problem 

The well-known Stokeslet in two dimensions is reproduced here for completeness. 

where w is the distance between P and Q and n is the unit outward normal vector. 

(ii) Axisymmetric problem 

In the equations that follow, z is the axial co-ordinate, r is the radial co-ordinate, (2, R )  
are the co-ordinates of the ring source, p is the viscosity, Q_,, , (k)  and Q1,,(k) are 
Legendre’s function of the second kind of degree -4 and 4 respectively, and k is given by 

R2+ r2 + ( Z -  z)” 
2 Rr 

k =  (33) 
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The velocity kernels are given by: 

The traction kernels can be obtained using the surface normal vector n k  and the tensor 
fl:k(p, Q) (where a:k(P, Q) is the stress tensor component vjk at Q due to a unit source in 
direction i at P)  by forming 

t:(P, Q) = a$(P, Q ) n k  (35) 

where 

where 

C1 = (R + r)’ +(Z-  2)’ 

C, = R 2 +  r ’+(Z--  2)’ 

C3 = (R - r)”+(Z- z)’ 
C4 = R2- r2+ (Z- z ) ~  
C5 = R2- ?-- (Z - z ) ~  
c(j=8-‘ 

(37) 



NUMERICAL SOLUTION OF VISCOUS FLOWS 91 

APPENDIX 11. EXACT INTEGMTION OVER INTERNAL CELLS 

The nomenclature for the following equations is shown in Figure 17 where the source point 
P lies on a vertex of the mth internal cell signified by 0,. Following (31) the integrals of 

Figure 17. Nomenclature for exact integration 

uf(P,  Q) over R, can be written in the form 

where 8, is the Kronecker delta function and I 

I = 6.. -In (w) dR, (39) 

After converting to local polar co-ordinates with origin centred at P, integration yields: 

I=  -$Csin(P){CIn(C)cos(~)+Ca sin(P)-$A+B ln(B)cos(y)} (41) 

A COS’ (A - p )  
- a cos (2A - 2P) -In (CIB) sin (2h - 28)) (42) Bs in(y)  

JI1 = iC2 sin2 ( p )  

J,,=4C2sin2 (P){ln(CIB)cos (2A-2P)-sin(2A-2p)[a- 2 8  sin A (y) I} (43) 

A sin2 (A - 6) 
J~~ = 4 ~ 2  sin2 (6) { + a cos (2A - 2p) +In (CIB) sin (2A - 2p)). (44) 

P sin ( Y )  
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